Author Archive

postheadericon Risk assessment and emotions

They find that risk prediction and processing of emotions are neurologically related.

 The results were published on 12 marched in the Journal of Neuroscience and shed light on why certain risks and financial risks are often underestimated. It could also help understand addictive behaviors like drug use or gambling, which could be caused by poor assessment of risk assumed.
Planning involves making predictions. In certain environments, however, our predictions are not accurate. An erroneous prediction of risk often leads to unusual behavior: euphoria or excessive gambling when risk is underestimated, and panic attacks or depression when we predict that things are riskier than they really are. To understand these anomalous reactions to uncertain situations face, we need to study the neural mechanisms that underlie how we learn to predict risk.
Surprisingly little research had been conducted on this topic and no one knew how the brain is involved in predicting risk.
Using functional magnetic resonance imaging while performing a task of bet, in which the risk is constantly changing, the researchers found that early activation of the anterior insula of the brain is associated with mistakes in predicting risk. The activation time course also indicates a role in rapid updating, and this suggests that this brain region is related to how we learn to modify our risk predictions.
The result is interesting because the island is a place where we integrate and process emotions.
Field experts deem as very important discovery, because it indicates that we need to update our understanding of the neural basis of reward anticipation in uncertain conditions to include risk assessment.
Contrary to what Descartes said, the finding that risk prediction and processing of emotions are related suggests that emotions may be intimately related to rational decision making, and they could help us assess the risk such correct in an uncertain world.

postheadericon The default brain expects fair treatment

The default brain is conditioned to demand fair treatment. This depends on the emotional side of it, which in this case is imposed on the rational part.

The human brain is configured to sense the sense of fairness. Is justice a simple trick we adopt only when we secretly advantages in it for us?
Many psychologists have recently left the purely utilitarian view as too simple. It has also been the view of economists who maintain that human beings always take rational decisions, consciously and unconsciously, to maximize our economic interests. But the ultimatum game and found that this is not always so.
Recent advances in cognitive science and neuroscience now allow to approach the issue in different ways, yielding intriguing results.
Golnaz Tabibnia and colleagues at UCLA have used the ultimatum game to explore the sense of fairness or justice and self-interest in a laboratory.
From these pages we have tried the fascinating psychological test called the “ultimatum game”. In the ultimatum game involves two players and is played with real money. When called proposer is given a certain amount of money that has to be divided into two parts not necessarily equal and stay with it wants. The respondent then has two options: stay with the party that he left for the proponent or that the two are left without any. Both know the game and the responder previously known distribution made by the proponent. Additionally, the game is only one hand. Although you can repeat, not with the same players.
These scientists explored a variant of this game in which the gain of the respondent was always $ 5, but in which some times that amount was a low proportion of total and one half times or most of the initial sum. Ie in the first case would be an unfair allocation and in the other right. The idea was to ensure that subjects responded only to the idea of ​​equity and the amount of profits.
It also asked participants to rate on a scale the degree of happiness or contempt they felt. They found interesting results: even when the gain was always the same subjects were very happy when the offer was fair and very disappointed when the offer is 50% away.
These researchers wanted to know if there is something inherently rewarding to be treated with decency. So we monitored the brain activity of subjects while participating in the game. They found that when the offer was miserable anterior insula, which is the region associated with negative emotions can be moral indignation, activated significantly. However, they found that the ventral striatum, a region associated with reward mechanisms, activated when subjects were treated equally, although the gain in both cases was the same.
As reported in your article April issue of Psychological Science, the brain is the selfish behavior emotionally unpleasant (obviously that of others), and a group of neurons is different equity uplifting. Moreover, these emotional signals occur in structures that are fast and automatic, so it seems that the emotional brain activity denies or undermines the rational part of the mind, which is more deliberative. Faced with a conflict, the default position of the brain is, therefore, demand a fair deal.
In addition, when scientists examined the brains of those who swallowed their pride for a few dollars, brain activity showed a specific pattern. It seemed that the unconscious mind can temporarily appease the spirits of a contemptuous response, allowing the rational, utilitarian brain to rule, at least momentarily.
If you are paid like their colleagues in the office even if you take more work done and know why it makes you feel bad.

postheadericon Our brain is predisposed to the hierarchy

Researchers show that our brains for money is as important as the social status we have.

Cover of Neuron. Photo: Lydia Kibiuk and Ethan Tyler, NIH Division of Medical Arts.

What is more important money or social status? According to the researchers National Institute of Mental Health in the region of the brain called the striatum weighs against each other when making decisions, both being important. In fact, the neural circuits involved are activated by important events related to a change in hierarchical status as intensely as when you win money.
Those who dream of a classless society may be frustrated with this result, because the perception of the hierarchy is deeply etched in our brains, and therefore in our biological nature.
In addition, these researchers suggest that our social status strongly influences our motivations, as well as our mental and physical health.
Previous studies showed that social status is a good indicator of health. In animals stressed by their social position was observed to have cardiovascular problems and suffering from anxiety and depression. In a classic study in the civil service of the United Kingdom found that lower-ranking individuals were more likely to have health problems and more likely to die prematurely. A low range compromised their health through psychological effects. Thus, the limitation of control over our own lives or our relationships with others, inherent in having a low range, finally passed a bill on health. On the other hand, hierarchies with mobility, which could go up and down the ranks, was that those who were at the summit suffered from stress-related problems to the possibility of losing their position.
Caroline Zink, Andreas Meyer-Lindenberg and colleagues used functional MRI to study this issue. They created an artificial hierarchy with 72 volunteers who played individually to a specially designed computer game with which they could earn real money while their brain activity was monitored. They were assigned a rank in a hierarchy based on their alleged fictitious skills by playing the game in relation to other “players” simulated. The study subjects, who underwent the experiment individually, unaware that the other players playing the same were fictitious. But while playing the actual participants could see the scores and pictures of the other “players” inferior or superior in rank and allegedly played in different rooms simultaneously. The researchers could control the effect that the results of others on the proband had manipulated the results of fictional players.
They were assured that the results of others does not affect their monetary gain, thus would effect only on its position in the hierarchy.
Though they knew the score of others did not affect their own performance and rewards (in fact told them to ignore), brain activity and behavior of the participants were strongly influenced by his own position in the hierarchy against of the other. That is, the players were concerned about their position in the hierarchy even though it did not influence the money they earned.
According to Zink processing of hierarchical information seems to be ingrained in our brains, occurring even outside of an environment “competitive”, stressing how important it is for us.

Among the results may be mentioned that the ventral striatum responded to the possibility of increase or decrease in the range as much as a monetary reward, confirming the high value of social status.
With only see a player of higher rank, as opposed to a lower, activated an area near the front of the brain that appears to size people, making interpersonal judgments and assessing social status.
A circuit on the front center of the brain that processes the intentions and motivations of others, and deep regions of the brain that process emotion, were activated when the hierarchy became unstable, allowing for movement up or down.
Play better than a senior player activated regions that control the action planning while playing worse than an inferior player activated brain regions associated with emotional pain and frustration.

The more positive was the disposition or mood experienced by players to win was stronger brain activity in the emotional pain circuitry when they viewed an outcome that fell through the ranks. That is, people who felt more joy when they won also felt more pain when they lost. This activation of emotional pain circuitry may be behind the risk of health problems resulting from competitive stress among individuals.
The key is that this provides evidence that our brain considers the hierarchical position as important as other types of rewards and we measure our benefits in terms of the benefits of others. Our brains would be exquisitely sensitive to the hierarchical position. If the hierarchy is stable we can ignore those who are below and concentrate on those above. If unstable, and we could lose our status, so are the emotions and problems.
Now these researchers are planning to continue the study in patients with mental problems like schizophrenia or autism. They are also exploring a particular gene variants that may affect the brain’s response in such experiments.

postheadericon Decisions predictable brain

According to researchers at the Max Planck Institute and other German institutions can predict what decision an individual will take up to seven seconds before this individual consciously make that decision.

Among the frontier areas of science, modern neurology is the one that affects our perception of the essence of what a human being. Are pre-installed in our brains justice or other moral concepts? What part of us is rational and how much I am? Are we deterministic machines without free will? Little by little, thanks to modern technology and the scientific method, we have begun to solve the mysteries that philosophers have been debating for centuries.
The result that concerns us is so amazing, fascinating and extraordinary that it is hard to resist the spread despite being published a few weeks ago.
In this study, researchers led by John-Dylan Haynes used a brain scanner and a sophisticated computer program to find out what happens in the human brain just before a decision is made consciously.
Many processes of the brain occur automatically to avoid overloading the conscious with routine tasks. However, we assume that when you have to decide something the whole process is done consciously. This new result is precisely this assumption into question. It seems that what actually happens is that the decision is developed over a long time and slowly built into the brain in a cascade of unconscious brain processes that lead to decisions that consciously takes the final decision.
The study participants were free to choose whether they wanted to push a button to the right or the left button. Although they were free to make that decision had to remember when they felt they had decided to hit one of two buttons. The aim of the experiment was to see what was happening in the brain in the period prior to the time at which the person felt that he had taken a particular decision.
The researchers found that it was possible to predict from brain activity, which option participants would choose up to seven seconds before the decision was conscious in their minds.
Normally field scientists study what happens when a decision is made but what happens seconds before. The fact that decisions can be predicted far in advance is a truly amazing result.
This result may remember the movie “Minority Report”, but in this case is not only to know the intentions of an individual who has already decided to commit a crime, but to predict the intentions of an individual even when he does not know what decision will take.
The prediction of these free choices made possible by a sophisticated computer program that can be trained to recognize typical patterns of brain activity (provided by a system of functional magnetic resonance imaging) preceding an election between two options. Micropatterns activity in frontopolar cortex was predicted even before the participants knew which option they would consciously choose.

postheadericon Moral decisions dependent on two brain regions

Moral decisions in which they must weigh the inequality and the common good are controlled mainly by two different brain areas.

Imagine you have to donate food to an orphanage in Uganda, but due to circumstances beyond its control, is forced to choose between two stark choices: either give some children enough food to satisfy their hunger for several days and leave the other hungry, or fairly distribute each a small amount of food that satiates their hunger only for a few hours.
A study recently published in Science is one of the first to investigate how the brain is discussed in the moral dilemmas in which they must sacrifice one thing for another.
Hsu Ming, an economist at University of Illinois Urbana-Champaign and his colleagues Cédric Anen and Steven Quartz of the California Institute of Technology in Pasadena (California) used functional magnetic resonance imaging (MRI) to scan the brain activity of 26 volunteers while solved this problem a variation of the orphanage.
The researchers reported that subjects would have arranged a donation of 24 servings of food for 60 children from an orphanage in Uganda true, but that some of the food rations would not be provided to some children.
The volunteers had to make choices between different pairs of options displayed on the computer screen. One option was to not provide one child a certain number of meals or distributing the loss between two others. So the volunteers had to choose between not give 15 meals a child to give 7 or 8 servings of food and children B and C.
As at first the least number of meals was the same in both options people often chose to share the loss between the two, but according to the number of meals removed the two children grew, for example maintaining less than 15 A and remove 9 to each of the children B and C, people tended to change tactics.
The strategy adopted by the volunteers was therefore to minimize the impact. The finding suggests that people strive to avoid inequality, but beyond a point maximizing the common good becomes important, and both factors compete in decision-making.
MR images provide clues to how these factors can be encoded in the brain. The insula, a region linked to emotional processing, was more active in subjects considered a more unequal distribution of food also was also more active in subjects whose choices suggested an aversion to inequality above average. The activity of the putamen seemed to follow the common good, by scaling the total number of meals that could be donated to a given case.
At the end of the study, researchers at the orphanage donated the equivalent of $ 2279 for virtual meals donated by volunteers in the experiment.
According to other researchers the importance of the article is that the authors were able to isolate two different moral motivations and investigate how they are represented in the brain. The subjects they had to do to maintain a balance between avoiding inequality and maximize the common good. It would be interesting to study how this balance is affected by the culture you belong to the subject on which perhaps is balanced differently inequality and the common good.
Hsu plans to test this hypothesis with various experiments with volunteers from Asia, Europe and America.

postheadericon A step in the reading of thought

Scientists manage to recognize the words in which individuals think with a high level of correct answers.

The speed at which neuroscience is progressing so it’s hard to assimilate its results and implications scientific, philosophical, and social policies from them. Although only a few months ago we speculated from this site on the ability to read minds, appear that it is taking shape, appearing in the real world which until recently seemed science fiction.
Now scientists have taken an important step in understanding how the human brain codes the meanings of words by creating a computer model that can predict patterns of brain activity associated with the names of objects that the individual can see, hear , feel, smell or taste.
Previous studies showed that using images from functional magnetic resonance imaging (fMRI) could detect which brain areas are activated when a person thinks of a specific word. The team of researchers from Carnegie Mellon has gone a step further in predicting these patterns of activity for objects perceived by the senses.
The study could eventually be used to identify thoughts and could have applications in the study of autism and other disorders like paranoid schizophrenia, or semantic dementias such as Pick’s disease. The model can also help resolve questions about how the brain processes words and language.
The team, led by Tom M. Mitchell and Marcel Just, created the computer model using fMRI activity patterns for 60 objects and using statistical analysis of texts totaling more than a billion words. The computer model combines this information on how names are used within a text to predict patterns of brain activity for thousands of individual words on a pretty good success. To achieve this it was assumed that the brain processes words based on how they relate to motor and sensory information.
Mitchell believes he has identified a number of building blocks that are used by the brain to represent meanings. Thanks to computational methods that capture the meaning of words by how they are used in text files, these blocks can be assembled to predict neural activation patterns for each specific name. The researchers found that for specific words, the predictions are quite similar to actual patterns obtained by fMRI available. That is, they were able to make predictions and experimental test them, and therefore could know, with a relative margin of safety, in which word he thought a particular individual.
This computational model provides clues to the nature of human thought. The brain represent the actual meaning of a name in brain areas associated with how people feel or manipulate the actual object they belong. For example, the meaning of an apple would be represented in areas responsible for the taste, smell and feel when you chew. An apple would be for what you do with it. This study represents a further step in understanding the brain code.
Remember that the names or words that studies this particular model correspond to objects that can be perceived by the senses. Abstract words fall outside this category.
In addition to this representation in motor and sensory areas of the brain, researchers found significant activity in other areas, including frontal areas associated with functions related to planning and long-term memory. When someone thinks of an apple, for example, trigger memories of the last time the individual in question ate an apple or start thinking about getting an apple.
All this, according to the authors, suggests a theory of meaning based on brain function.
In the study nine subjects, of which fMRI images were obtained, they had to focus on 60 different names of 12 different semantic categories including animals, body parts, buildings, clothing, insects, vehicles, plants, etc..
When constructing the computational model the researchers used self-learning techniques to analyze computer names on texts, totaling a billion words, which constitute the corpus of typical use of the English language. For each name their frequency calculated simultaneously with each of the 25 verbs associated with sensory and motor functions (see, hear, hear, smell, eat, drive, drive, lift, etc..). This is done routinely in computational linguistics to characterize the use of words.
These 25 verbs appear to be the building blocks that the brain uses to represent the meaning of such words.
Using statistical information to analyze the patterns of brain activity were volunteers during the test to the 60 words of encouragement, the researchers were able to determine how their simultaneous occurrence with each of the 25 verbs considered affected the activity of each voxel (volume elementary three-dimensional) images of fMRI.
To predict activity patterns for each word contained specific reference texts, the computational model determined the simultaneous appearance of a name next to the 25 basic verbs and reconstructed a map of activity based on that data. The model was able to predict patterns for thousands of words.
The computational model was trained with data from the activity patterns of nine volunteers based in 58 of the 60 stimulus words. For experimental verification of the model is called the computer system to predict the pattern for the other 2 remaining cases of those already in possession of the actual activity patterns. The success rate was around 77 percent.
The model demonstrated its ability to predict activity patterns even in semantic areas for which no training. He turned to train the model, but only for words for 10 of the 12 semantic categories, trying then to words belonging to these two categories. For example, it eliminated the categories of vehicles and plant and testing the model for the words airplane and celery. In this case, the success rate was down to 70%, but was still above 50%.
In summary, this study shows a method to read a very large set of thoughts from brain activity with an efficiency greater than 3 of 4, even when few calibration data.
Although now only be read single words, reading sentences would not be far away. Researchers can take these names as the scaffolding with which to begin to understand how the brain uses several words and assembles them into phrases. In the future, researchers plan to study the activity patterns for adjective-noun combinations, prepositional phrases and simple sentences. Also hope to study how the brain represents abstract names and concepts.

postheadericon On the premium to sell your possessions

Researchers have linked the effect of bias in favor of ownership to a specific region of the brain responsible for feelings of fear of loss.

When people want to sell their favorite possessions, like your car or your iPod, put a high price, but do not assume the same price if the object belongs to a third party. This effect is analyzed by some economists and explain behavior, among other things, why the house price does not drop suddenly to burst the bubble. We ask a lot more for something we already have what you would pay to have it, because we imagine the feeling we’d have if we let the object to which we are so attached.
In a recent study researchers have linked the effect of holding or bias in favor of ownership (endowment effect) to a specific region of the brain responsible for feelings of fear of loss. The finding could lead to a better understanding of how humans decide if a product is worth the price you have set.

To study this effect a team of neuroscientists led by Brian Knutson of Stanford University studied the brain activity of 24 people (men and women) while they haggled the price of some popular gadgets. These individuals were given various electronic toys such as iPods and digital cameras with which they could stay after the experiment. They were asked to decide whether they wanted to buy or sell at certain prices while measuring brain activity mediating functional MRI.

Apparently, according to data of brain activity, fear controlled transactions. The right insula, which is the brain region associated with the anticipation of negative consequences such as pain, was more active when participants made decisions about the sale of objects possessing that when it came to other objects.

The higher the activity in that brain region most likely were the sellers to ask for a higher price for their possessions that they were willing to pay for the same objects of another individual.

The results suggest that the anticipation of pain to deliver possession is what drives the bias in favor of ownership. We simply can not bear the thought of losing a cherished object. The researchers published this finding in the June 12 Neuron.
According Hackjin Kim of Korea University in Seoul, the finding could help create a better economic model to predict the choices people make about the products, relationships and other issues. In the near future may be achieved with very good accuracy to predict trends in behavior among individuals when buying or selling an object by studying the brain response.
But other experts like Gregory Berns of Emory University neuroeconomist disagrees with this analysis. Not convinced that the insula cause bias in favor of ownership. Activation of this region could simply indicate, he says, people susceptible to this effect is emotionally excited by the prospect of selling some of his, but the island itself would not put a higher price to the object.

In order to confirm either possibility could do experiments in the deletion of the activity of the insula and thus check whether to suppress or bias in favor of ownership. Devices have recently been developed which, by applying an intense magnetic field, can temporarily stop the activity of specific brain regions. Perhaps we may know soon.

postheadericon The sense of adventure is primitive

Identified a key region of the brain that encourages us to be adventurous, and is located in a primitive area of the brain.

Do you like extreme sports? Have you kayak down the Colorado River or performed an African Safari? Will often to restaurants that serve exotic food? When going to the supermarket and see a new product, did you check to cart? Maybe now read these lines from the jungle of Borneo satellite. If the answer is yes probably likes adventure, novelty.

Now a group of scientists from the Wellcome Trust has successfully identified a key region of the brain that encourages us to be adventurous. The region, located in a primitive area of ​​the brain are activated when we choose unfamiliar option, suggesting that there is an evolutionary advantage if you tend to explore the unknown. This finding may also explain why the changed the appearance of a product family are encouraged to choose it from the shelves of the supermarket.

In the experiment conducted at the Wellcome Trust Centre for Neuroimaging at University College London. In it a few volunteers were shown a selection of cards with images that became familiar. Each card was also associated with a unique reward probability and during the experiment the volunteers were able to optimize their choices for maximum reward. However, when introduced unfamiliar picture cards researchers found that volunteers were more likely to risk a new decision to continue with the familiar and safe options.

With an apparatus of functional magnetic resonance imaging could also see the brain activity of volunteers. Bianca Wittmann and his colleagues realized that when subjects chose an unfamiliar card had increased activity in the ventral striatum. This brain region is one of the most primitive from the evolutionary point of view, suggesting that this phenomenon must be evolutionarily advantageous and likely have many other animals.

When we make a decision or carry out an action that turns out to be beneficial then you get a reward by releasing dopamine. This reward helps us learn which behaviors are preferable and advantageous or worth being repeated. The ventral striatum is one of the key regions related to reward processing in the brain. Although these scientists can not say with confidence from magnetic resonance images how the search for novelty is rewarded, Wittmann believes it must be through a process of dopamine release.

However, although the exploration of novelty can give advantages to encourage us to find most beneficial decisions than usual, you can also make us susceptible to exploitation.
According to Wittmann we have a preference for a particular brand of chocolates, but if you use another package put in the “new taste” or something similar we can see tempted to discard the usual choice and choose the new one. This would introduce a dangerous system of selling “the same wine in different bottle,” something that marketing departments could be used (if not done already).

There is an even more dangerous. The novelty seeking may also play an important role in addiction to gambling and drugs, which are mediated by malfunctions malfunctioning circuit dopamine release.

postheadericon Children and moral judgment

According to one study, children are prone to empathy and moral judgment.

Are we born with moral judgment or pre-installed in our brains make it through education? ¿Children distinguish between good and evil? We know that the human brain matures slowly and only reaches its full maturity when adolescence ends, Does this affect moral judgment? These questions are certainly very interesting to try to answer. Now we begin to see some of your answers.

According to researchers at the University of Chicago children between seven and twelve years of age seem naturally inclined to feel empathy for the pain of others. This result is based on functional magnetic resonance imaging and is similar to that obtainable in adults. Then, and according to these data, children, like adults, show a response to pain in the same brain regions.

The researchers also discovered additional aspects of brain activity, manifested when subjects see another person being hurt by a third party intentionally and that would be related to moral judgment.
According to Jean Decety this study examines both the neural response to pain of others as the impact to see someone causing pain to another.

An article entitled “Who Caused the Pain? An fMRI Investigation of Empathy and Intentionality in Children “published in Neuropsychologia describing these results and the experimental method used.
According to these researchers empathy would be preprogrammed in the brain of normal children and would not be entirely a product of parental education or social environment. According to Decety understanding the role of the brain in response to pain can help researchers understand how certain brain impairments influence anti-social behavior, as in the case of bullying.
The researchers showed 17 children (in the group were eight boys and nine girls) between 7 and 12 years old pictures and animations of people suffering pain. Receiving pain was inflicted accidentally or on purpose. The brain activity of subjects was studied as both a functional magnetic resonance system.
The images from this system showed that parts of the brain that were activated in these subjects were the same as those activated in adults under the same conditions.

The perception of others’ pain was associated with increased hemodynamic activity (blood flow) in the neural circuitry involved in processing pain first-hand. However, when the children saw images of someone intentionally causing pain, the brain region that were activated were related to social interaction and moral reasoning.

The study provides clues about the perception that children have about what they are good and what is wrong, and brain processing. According to Decety, although the study draws no explicit moral judgment, perception of an intention to harm another individual makes the conscious observer of moral evil.

Subsequent interviews that were made to show children that they were aware of moral misconduct when someone was hurt intentionally visionadas animations. Thirteen of them said that such situations were unfair and asked for the reasons that could explain the observed behavior.

postheadericon Learning from mistakes is not easy if you are 8 years old

Children under 8 years of learning a completely different way to adults. A child of this age learn from the positive retrolimentation rather than errors.

Humans learn from our mistakes. As adults we know that if we perform our tasks bad we impose a corrective. Even if we behave really bad punishment can be raised and give our bones in jail. We also want to think that if we perform well we will be rewarded in some way. Perhaps this is the meritocratic system that has allowed the advance or dehumanize the capitalist system, do not know. But how does this type of positive or negative feedback in the brain? Does it work well in children?
A recent study of children 8 years learning a completely different way to adults. A child of this age learn from the positive retrolimentation. Thus, if we reinforce good behavior of a child of that age with a “well done” the child will learn from experience. However, not learn from negative feedback. Scolding thus be less effective than in the first case of positive reinforcement.

Children under 12 years operate best in contrast and negative reinforcement does work best for you. For adults is equal to the latter, but a more efficient manner.
Eveline Crone and colleagues from Leiden University have shown that this transition of learning from the successes to learn from mistakes seen in brain activity, especially in cognitive control regions of the cerebral cortex.
This system used a functional magnetic resonance imaging and three volunteer groups composed of children aged 8 and 9, children 11 and 12 and adults 18 to 25 years.

For the experiments the scientists involved were assigned to all the volunteers a series of tasks to be performed with a computer as they watched their brain activity. The tasks required to find out about the rules of a game. If they did properly appear in the display a signal informing, otherwise a cross appeared.

They found that in children aged 8 or 9 years of cognitive control certain regions of the cortex react strongly to positive reinforcement, but did not respond at all to negative feedback. In children of 12 or 13 years and in adults was the reverse: their cognitive control centers are more strongly activated by negative reinforcement, and much less positive.
Crone was surprised at the results. He hoped that brain activity was the same for all ages, although the answers may have different intensity. Children are learning all the time, therefore, this new information might be interesting for those who educate children to adapt their teaching methods according to age.

According Cron children 8 years learn efficiently, but do so differently than they do the older ones.
According to the literature on pedagogy seems that children respond better to reward than punishment, and this new result would be consistent with it. According Cron reason would be that the information on what went wrong would be more complicated to process than the opposite. Learning from mistakes is more complex than follow the same path.
Perhaps the difference in learning among children 8 years and the 12 is due to experience or a combination of experience and brain maturation, although not yet know the answer.

There is a brain region that responds strongly to positive reinforcement: the basal ganglia, just outside the cerebral cortex. The activity of this brain area does not change, remaining at the same level of activity for the three groups.